如何计算直角三角形的斜边(如何计算三角形斜边的长度)
三角形斜边的长度怎么算?
条件不同,计算斜边的方法也不同。
比如:首先知道一个直角三角形的两条右边,求斜边。
方法是利用勾股定理:斜边=根(两直角边的平方和)。
知道直角三角形的一个锐角A及其对边,求斜边。
方法是用正弦函数:斜边=(角A的对边)/sina。
已知直角三角形的锐角A及其邻边,求斜边。
方法是用余弦函数:斜边=(角A的邻边)/cosa。
知道直角三角形的面积和斜边上的高度,求斜边。
方法是利用三角形的面积公式:斜边=(三角形面积的两倍)/斜边上的高度。
三角形斜边长度的计算公式是什么?
求解三角形:求解直角三角形和斜三角形的特例。
勾股定理:只适用于直角三角形。在国外叫勾股定理。A ^ 2+B ^ 2 = C ^ 2,其中A和B是直角三角形的右边,C是斜边。勾股数是指能使勾股定理关系成立的一组三个正整数。比如3,4,5。它们分别是3、4和5的倍数。常见的毕达哥拉斯弦的个数是3、4、5;6、8、10;5、12、13;10、24、26;等等。
斜三角形:在三角形A、B、C中,角A、B、C的对边分别是A、B、C。
然后是
1.正弦定理
A/sinA=b/sinB=c/sinC=2R(R是三角形外接圆的半径)
2.余弦定理
a^2=b^2+c^2-2bc*cosA、b^2=a^2+c^2-2ac*cosB
C 2 = a 2+b 2-2ab * cosc注:勾股定理实际上是余弦定理的特例。
3.余弦定理的变形公式
cosa=(b^2+c^2-a^2)/2bc cosb=(a^2+c^2-b^2)/2ac cosc=(a^2+b^2-c^2)/2ab
斜三角形的求解
已知条件定理用一般方法求解。
由A+B+C = 180°得到A、B、C等一条边和两个角正弦定理,由正弦定理得到角度A。有解的时候,b和c也有解。
以及两边(如A、B、C)夹角的余弦定理:第三边C由余弦定理得出,与小边相对的角由正弦定理得出,另一个角由A+B+C = 180£得出。有解决办法,就有解决办法。
三边余弦定理(如A、B、C):从余弦定理求角度A、B,再用A+B+C = 180°求角度C,有一个解就只有一个解。
而角度b是从正弦定理得到的。求A+B+C = 180°的角C。用正弦定理求C边,可以有两个解,一个解或者无解。
勾股定理
在任何直角三角形中,两个直角边的平方和必须等于斜边的平方。
如果△ABC满足∠ ABC = 90,则AB+BC = AC。勾股定理的逆定理也成立,即两条边的平方和等于第三条边的平方,那么这个三角形就是直角三角形。
如果△ABC满足,∠ ABC = 90。
投影定理,欧几里德定理
在任一直角三角形中,如果作出斜边上的高度,则斜边上的高度的平方等于从斜边上的高度所在的点到另外两个不垂直于两个直角的顶点的线段的长度的乘积。
如果△ABC满足∠ABC = 90°,则BD⊥AC为BD =AD×DC。
射影定理的推广
如果△ABC满足∠ ABC = 90,则为BD⊥AC.
⑴AB = BD BC
(2)AC = cdbc
(3)ABXAC=BCXAD
正弦定律
在任何三角形中,每个角的正弦与对边之比等于三角形面积的两倍与三边长的乘积之比。
在△ABC中,sinA/a=sinB/b=sinC/c=2S
三角形/abc结合三角形面积公式可以转化为a/sinA=b/sinB=c/sinC=2R(R为外接圆半径)。
余弦定理
在任何三角形中,任何一条边的平方等于其他两条边的平方之和减去其夹角余弦的两倍。
在△ABC中,a = b+c-2bc× cosa
这个定理可以转化为COSA = B+C-A ÷ 2BC。
以上就是由优质生活领域创作者 嘉文社百科网小编 整理编辑的,如果觉得有帮助欢迎收藏转发~
本文地址:https://www.jwshe.com/630357.html,转载请说明来源于:嘉文社百科网
声明:本站部分文章来自网络,如无特殊说明或标注,均为本站原创发布。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。分享目的仅供大家学习与参考,不代表本站立场。