今天来给大家分享一下关于生活中的数学之美-生活中的数学之美10个例子的问题,以下是对此问题的归纳整理,让我们一起来看看吧。

生活中的数学美
浅谈数学中的美 :“哪里有数学,哪里就有美”。只要我们用心体会,它们就会呈现出来,给我们以美的享受。:简洁美;符号美,抽象美,统一美;协调美,对称美;公式的普遍性;应用的广泛性;奇异美等 当你倘佯在 的殿堂,聆听那优美动听的乐曲时,你会体会到 带给你的“美”的享受;当你漫步在文学的天地,欣赏着那“惊天地,泣鬼神”的绝妙语句,一定能够领悟文学带给你的的“美”……其实,“那里有数学,哪里就有美”,这是古代哲学家对数学美的一个高度评价.数学中同样存在着能够启迪智慧,陶冶情操的“美”。数学美的内容是丰富的,如数学概念的简单性,统一性,结构关系的协调性、对称性;公式的普遍性、应用的广泛性,还有奇异性等都是数学美的具体内容。下面结合初等数学谈谈我对数学美的理解。
1 数学概念的简洁美
数学中的概念许许多多,但每个概念都是以最精炼、最概括的语言给出的。如代数中因式分解的概念:把一个多项式分解成几个整式乘积的形式。几何中线段垂直平分线的概念:“垂直于这条线段并且平分这条线段的直线等。如:如在《图的初步知识》教学中,可以先让学生去探究过两点的直线有多少条?然后再让学生用自己的语言来概括这个结论,最后教师再给出“两点确定一条直线”,短短的一句话,简练严谨,内涵丰富,充分让学生体会了数学定理的简洁之美;又如九年级上圆的定义“圆是到定点的距离等于定长的点的集合”,若无“集合”则形成了点,构不成圆,一字之差则情况相差万里,充分体现了数学概念的简洁美。
2 符号美、抽象美、统一美
数学知识大部分由数字和符号组成,从四则运算到比较大小,还有运算中的大、中、小括号,符号都讲究大小适中、上下左右对称。美好的数字:一是万物之始,一统天下、一马当先;二是偶数,双喜临门、比翼双飞;一去二三里,烟村四五家。亭台六七座,八九十枝花(邵雍);七八个星天外,两三点雨山前(辛弃疾);一帆一桨一渔舟,一个渔翁一钓钩。一俯一仰一顿笑,一江明月一江秋(纪晓岚)。读了上面的成语、诗,每个人都明显感到,无论是数字的单个应用或重复引用或循环使用,看似毫无感染力的数字竟能表现出各种思想感情。
3 结构系统的协调美、对称美
数学中这种对称性处处可见,如几何中的轴对称、中心对称;代数中多项式方程虚根的成对出现,函数与反函数图像的关系(关于直线yzx对称)等都显现出对称性。对称性能给人美观舒适之感。四边形的形状是多种多样的,但最完美的是正方形,因为它的对称轴比任何四边形都多,而且还是中心对称图形。这些性质使正方形获得了人们的喜爱和广泛应用。如人们用边长为单位长度的正方形面积,作为度量其它图形面积的基本单位。人们也喜欢用正方形图案美化环境。比如用正方形地板砖铺室内外地面,不仅美观大方,而且施工简单易行。毕达哥拉斯说:“一切立体图形中最美的是球形,一切平面图形中最美的是圆形。”因为这两种图形在任何方向上看都是对称的。其实在我们身边随处可见根据对称设计的东西。小到一块橡皮、一只球拍,大到一架飞机、一座建筑。著名的北京人民大会堂;高耸入云的上海东方电视塔;埃及金字塔的缩影;形象逼真的扇形;梅花瓣样的组合图形;铜钱式的圆中方;美丽的“雪花”图案,更显示出几何图形的对称美,和谐美。 4 公式的普遍性
世界上存在着无数形状不同、大小不一的三角形,但面积公式S=1/2ah适用于一切三角形面积的计算,这也是数学美的具体体现。
5 应用的广泛性
随着科学的发展和社会的进步,数学也越来越多的渗透到科学技术乃至社会生活的各个领域。到银行存款,会遇到利率的问题;铅球运动员应懂得应如何投掷才能取得理想成绩;足球运动员也要明白在何处出脚才最易命中对方的球门……此外,数学家把聪明给了电子计算机,电子计算机也使数学家变得更聪明。一句话“哪里有生命,哪里就有数学”。这也正是数学应用广泛性的体现,也是数学美的重要内容。
6 奇异美
奇异性就是新颖性、开拓性。我们以“√2”的出现为例。在无理数未出现前,人们认为任何两条线段的长都是可公约的。但后来有人发现正方形的对角线和边是不可公约的。及“√2”不能表示成两整数之比,这种奇异的结果导致数系的扩大,使人们从有理数的狭小的圈子跳出来,产生了知识的新飞跃,由此我们不难理解为什么数学上以奇为美。
此外,数学中的“勾股定理”“黄金分割”更是数学美的具体体现。勾股定理像一颗璀璨的明珠,具有无穷的魅力,使不少人为之倾倒,现有的证法至少有370种,成为世界上证法最多的的定理。黄金分割被广泛的应用在建筑建设, 美术等各方面。如五角星的各边是按黄金分割处理的;设计工艺品或日常品的宽和长时常设计成宽与长的比近似为0.618,0.618这个数是古希腊欧多克斯发现的,有趣的是,从此以后,这个数与人类有许多不解之缘:希腊女神体态轻柔优美,引人入胜。经专家研究,她的身体从脚到肚脐之间的距离与整个身高的比值,恰好是0.618。画家、艺术家 将其引入到绘画、雕塑等艺术领域,让作品变得更加和谐、美丽;舞台的报幕员也总是喜欢站在舞台0.618处时,音响效果最好,而且人也显得自然、大方。 人在气温23℃左右,最舒服,生理功能发挥得最好。这些都是源于黄金分割原理。
数学美除了以上具体内容外,还有在于数学教学当中。教师绘声绘色的讲解、精辟的分析、巧妙的点拨、生动的语言、合理的板书等都给学生以美的享受。教学中教师应当经常有意识的向学生讲解数学发展史,数学的广泛应用,不断展示数学的美,进一步理解美的真正含义。
数学美的魅力是诱人的,数学美的力量是巨大的,数学美的思想是神奇的。它可以改变人们认为对数学枯燥无味的成见,让人们认识到数学也是一个五彩缤纷的美的世界。如果说数学使许多人心旷神怡,并为之付出毕生的精力,从而促进了数学学科的飞速发展,那么,它也一定能够激发更多的有志青年追求知识,探索未来的强烈愿望,因为“美”在数学中存在。 [1](英)罗素《我的哲学的发展》商务印书馆 1985:153[2] 北大美学教研室编《西方美学家论美和美感》 商务印书馆 1980:19现在数学的本体是生活的哪些方面?《数学译林》1984年,第三卷第3期,P246-265没有一门学科能像数学一样,用这么多的符号展示一系列完整完美的世界。这么说吧,实数集合是完备的,任意个数的实数可以任意加减乘除,结果还是实数(注:数学完备性是根据数列的收敛性严格定义的。我这里不是严格意义上的完全性陈述,但可以认为是一种概括的陈述)。引入虚数单位,将实数集推广到复数集,或者任意个数的复数。如果你做那些运算,结果仍然是复数。(美)L·A·斯蒂恩主编《今日数学》 上海科学技术 社 1982:12
追问:确定管用吗?回再修改些字体 文献综述的格式百度里都有 把字体改改追问:不管用怎么办?回浅谈数学中的美 :“本文针对当前数学 中学生苦学、厌学的现象,从美学关于美的形象性、情感性、新颖性和功利性等特点着眼,试图探索美的观赏与智力开发、教学原则与美学原则的一致性,以便提高学生学习数学的兴趣和数学教学水平.:简洁美;符号美,抽象美,统一美;协调美,对称美;公式的普遍性;应用的广泛性;奇异美等 数学,如果正确的看,不但拥有真理,而且也具有至高的美。
------罗素
最有益的即是最美的
------苏格拉底
数学能促进人们对美的特性:数值、比例、秩序等的认识。
------亚里士多德 当你倘佯在 的殿堂,聆听那优美动听的乐曲时,你会体会到 带给你的“美”的享受;当你漫步在文学的天地,欣赏着那“惊天地,泣鬼神”的绝妙语句,一定能够领悟文学带给你的的“美”……其实,“那里有数学,哪里就有美”,这是古代哲学家对数学美的一个高度评价.数学中同样存在着能够启迪智慧,陶冶情操的“美”。数学美的内容是丰富的,如数学概念的简单性,统一性,结构关系的协调性、对称性;公式的普遍性、应用的广泛性,还有奇异性等都是数学美的具体内容。下面结合初等数学谈谈我对数学美的理解。
1 数学概念的简洁美 数学简化了思维过程并使之更可靠.
------弗赖伊(T.C.Fry)
算学中所谓美的问题,是指一个难以解决的问题;而所谓美的解答,这是指对于困难和复杂问题的简单回答.
------狄德罗
宇宙之大、粒子之微、火箭之速、画工之巧、地球质变、生物之谜。日用之繁、……无不可用数学表述.
------华罗庚
数学是上帝用来书写宇宙的文字.
------伽利略
数学中的概念许许多多,但每个概念都是以最精炼、最概括的语言给出的。如代数中因式分解的概念:把一个多项式分解成几个整式乘积的形式。几何中线段垂直平分线的概念:“垂直于这条线段并且平分这条线段的直线等。如:如在《图的初步知识》教学中,可以先让学生去探究过两点的直线有多少条?然后再让学生用自己的语言来概括这个结论,最后教师再给出“两点确定一条直线”,短短的一句话,简练严谨,内涵丰富,充分让学生体会了数学定理的简洁之美;又如九年级上圆的定义“圆是到定点的距离等于定长的点的集合”,若无“集合”则形成了点,构不成圆,一字之差则情况相差万里,充分体现了数学概念的简洁美。
2 符号美、抽象美、统一美 数学也是一种语言,且是现存的结构与内容的结构与内容方面最完美的语言.……可以说,自然用这个语言讲话;造世主已用它说过话,而世界的保护者继续用它讲话.
------C·戴尔曼就其本质而言,数学使抽象的;世纪上他的抽象比逻辑的抽象更高一阶.
------G.Chrystal
自然几乎不可能不对数学推理的美抱有偏爱.
------C.N.杨
数学知识大部分由数字和符号组成,从四则运算到比较大小,还有运算中的大、中、小括号,符号都讲究大小适中、上下左右对称。美好的数字:一是万物之始,一统天下、一马当先;二是偶数,双喜临门、比翼双飞;一去二三里,烟村四五家。亭台六七座,八九十枝花(邵雍);七八个星天外,两三点雨山前(辛弃疾);一帆一桨一渔舟,一个渔翁一钓钩。一俯一仰一顿笑,一江明月一江秋(纪晓岚)。读了上面的成语、诗,每个人都明显感到,无论是数字的单个应用或重复引用或循环使用,看似毫无感染力的数字竟能表现出各种思想感情。
3 结构系统的协调美、对称美
对称是一个广阔的主题,在艺术和自然两方面都意义重大.数学则是他的根本.
------H.Weyl 数学中这种对称性处处可见,如几何中的轴对称、中心对称;代数中多项式方程虚根的成对出现,函数与反函数图像的关系(关于直线yzx对称)等都显现出对称性。对称性能给人美观舒适之感。四边形的形状是多种多样的,但最完美的是正方形,因为它的对称轴比任何四边形都多,而且还是中心对称图形。这些性质使正方形获得了人们的喜爱和广泛应用。如人们用边长为单位长度的正方形面积,作为度量其它图形面积的基本单位。人们也喜欢用正方形图案美化环境。比如用正方形地板砖铺室内外地面,不仅美观大方,而且施工简单易行。毕达哥拉斯说:“一切立体图形中最美的是球形,一切平面图形中最美的是圆形。”因为这两种图形在任何方向上看都是对称的。其实在我们身边随处可见根据对称设计的东西。小到一块橡皮、一只球拍,大到一架飞机、一座建筑。著名的北京人民大会堂;高耸入云的上海东方电视塔;埃及金字塔的缩影;形象逼真的扇形;梅花瓣样的组合图形;铜钱式的圆中方;美丽的“雪花”图案,更显示出几何图形的对称美,和谐美。 4 公式的普遍性
世界上存在着无数形状不同、大小不一的三角形,但面积公式S=1/2ah适用于一切三角形面积的计算,这也是数学美的具体体现。
5 应用的广泛性
随着科学的发展和社会的进步,数学也越来越多的渗透到科学技术乃至社会生活的各个领域。到银行存款,会遇到利率的问题;铅球运动员应懂得应如何投掷才能取得理想成绩;足球运动员也要明白在何处出脚才最易命中对方的球门……此外,数学家把聪明给了电子计算机,电子计算机也使数学家变得更聪明。一句话“哪里有生命,哪里就有数学”。这也正是数学应用广泛性的体现,也是数学美的重要内容。
6 奇异美
奇异性就是新颖性、开拓性。我们以“√2”的出现为例。在无理数未出现前,人们认为任何两条线段的长都是可公约的。但后来有人发现正方形的对角线和边是不可公约的。及“√2”不能表示成两整数之比,这种奇异的结果导致数系的扩大,使人们从有理数的狭小的圈子跳出来,产生了知识的新飞跃,由此我们不难理解为什么数学上以奇为美。
数学美学方法的特点
1、直觉性,审美直觉是数学直觉中的一种重要类型,数学美学方法主要还是一种受审美直觉所驱动,而作出美学考虑的方法。正因为如此,数学美学方法的成功运用与主体的直觉能力就有很大关系。这一特点也说明,运用它所得到的结论,最终还要通过逻辑方法的检验才能成立。
2、情感性
数学美学方法的运用是建立在审美主体的数学美感之上的,和任何美感一样,人们对于数学的美感也具有强烈的感情色彩。愉悦、平和、明快、困惑、兴趣盎然、心满意足乃至于激动与惊异……数学美学方法总是是伴随着这种种感情体验,这与逻辑方法所具有纯粹理性形成了鲜明的对比。
3、选择性
数学美学方法是自觉地依据美学的考虑来作出选择的方法,它是“非常自足的、美学的、不受(近乎不受)经验的影响。”这种选择性使美学方法并不成为解决数学问题或获得数学发现的具体方法,而是一种确定方向、原则的策略方法。这种选择性是导致数学发现发明的指路灯,因此,它又使数学美学方法具有创造性。
4、评价性
数学美学方法常常表现为对已获数学成果的一种鉴赏与评价,一般来讲,逻辑方法的运用以问题的解决为方法的终结,而美学方法不仅关注问题是否解决,更主要是考虑问题的解决优美?前者着意于数学问题的“真”,后者着意于“真、善、美的统一”。庞加莱指出:“这并非华而不实的作风”,数学发展的历史已表明,美学方法的评价性对于“数学理论的富有成果性”来讲是不可或缺的。
数学美学方法运用的基本途径
1、增强审美自我意识,善于发现数学美因
在数学活动中,活动者的审美意识是客观存在的审美对象在活动者头脑中的能动反映,一般意义上也称为美感。它包括审美兴趣、审美倾向、审美能力、审美理想、审美感受等等。美感尽管表现为主观的,但它最终是来源于数学活动实践,数学中丰富的美的形式和美的因素(简称为美因)是美感产生的客观基础。只有在美因促使主体美感产生的条件下,主体才能作出美学的考虑。因此,善于发现数学美因,“识得庐山真面目”,是运用数学美学方法的前提。
2、在数学审美活动中,注意逻辑方法与直觉方法的结合。
美感的产生一般而言是直觉的,但这并不意味理性思维与审美无关,美学研究表明,理性思维在审美中是有重大作用的(数学审美更是如此)。在数学活动中,发获得真正的审美要,必须把逻辑思维方法与直觉方法结合起来。逻辑思维在数学审美中可以起到规范知觉、想象的趋向作用,前者渗透溶化于后者之中,才使审美感受不是一种初级的感性知觉,或一堆空幻的主观想象,而是对数学对象本质的某种能动的反映。
3、在数学认识、评价及创造过程中,自觉地以数学审美标准作指导。
数学美除了以上具体内容外,还有在于数学教学当中。教师绘声绘色的讲解、精辟的分析、巧妙的点拨、生动的语言、合理的板书等都给学生以美的享受。教学中教师应当经常有意识的向学生讲解数学发展史,数学的广泛应用,不断展示数学的美,进一步理解美的真正含义。
数学美的魅力是诱人的,数学美的力量是巨大的,数学美的思想是神奇的。它可以改变人们认为对数学枯燥无味的成见,让人们认识到数学也是一个五彩缤纷的美的世界。如果说数学使许多人心旷神怡,并为之付出毕生的精力,从而促进了数学学科的飞速发展,那么,它也一定能够激发更多的有志青年追求知识,探索未来的强烈愿望,因为“美”在数学中存在。 [1](英)罗素《我的哲学的发展》商务印书馆 1985:153[2]北大美学教研室编《西方美学家论美和美感》 商务印书馆 1980:19[3]《数学译林》1984年,第三卷第3期,P246-265[4](美)L·A·斯蒂恩主编《今日数学》 上海科学技术 社 1982:12在空中把具体的数字抽象成点,在一定的假设和约定下,可以得到完整的空,可以是一维的,二维的,三维的,甚至多维的。超越三维,你无法想象,但你无法否认它的存在。某空之间的点和序列即使按照一定的规则运行,也不能离开那个空,这就是完备性。这种完整性是美妙的。你可以把它想象成一个球体。无论你怎么移动,都无法走出球体。 吴振奎、吴振奎 《数学中的美》上海 社 2002-01 我修改了哈 嘿嘿 别人不可以转载的哈
数学的美体现在生活的哪些方面
数学的美体现在哪些方面
(1)完备之美[4]
[5]
一个完整的空空间可以带来很多好处。工程中最常用的空室是希尔伯特空室。顺便说一下,希尔伯特是二十世纪最伟大的数学家之一。
除此之外,数学中的很多体系也是完备的,比如众所周知的欧几里得几何。在几个公理的基础上,推导出一系列漂亮的结论,其生命力经久不衰,特别是在工程应用中。
(2)对称之美
说到对称之美,大家首先想到的是几何。其实几何只是一个方面,是“看得见”的方面。事实上,对称性在数学中无处不在。比如微积分的基本定理,说明了微分和积分的密切关系,本身就有很强的对称性。如泛函中的对偶算子,不仅在运算上具有显著的对称性,而且处处表现出性质的一致性。
(3)简约之美
数学上有一个很美的公式,那就是欧拉公式。这个公式把数学中几个“伟大”的数联系起来,它们是自然对数、圆周率、虚数单位和1,其中前两个是超越数,是目前人类才发现的,这两个对数学影响很大。我敢猜测,当找到下一个超越数时,数学将经历又一次伟大的革命。虚数单位在今天看起来没什么特别的,但刚推出的时候,就遭到了很多数学家的质疑和反对。最后进来了,数学开辟了一条康庄大道,就是复变函数。
毫无疑问,欧拉公式简单而完美,物理学中出现了另一个可以与之抗衡的公式,那就是爱因斯坦的质能转换公式。这个说法我可能有点武断,但目前只能想到这个,呵呵。
(4)抽象之美
这一点可能会引起许多人的异议,因为在许多人看来,抽象是不好的,因为离现实太远。可是我不这么认为,数学如果不抽象,便难以发展,虽然很多问题都是从现实引出的。数学建立在符号逻辑的基础之上,即使是解决实际问题,也要把问题抽象出来,用数学符号表示,才可以很好的解决。另一方面,抽象的数学,能带动你在无限的思维空间中遨游,抛开一切杂念,成为一种美好的享受。当然,这有点理想化,但不可否认,这确实是一种美的体验。
以上就是由优质生活领域创作者 嘉文社百科网小编 整理编辑的,如果觉得有帮助欢迎收藏转发~
本文地址:https://www.jwshe.com/1242065.html,转载请说明来源于:嘉文社百科网
声明:本站部分文章来自网络,如无特殊说明或标注,均为本站原创发布。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。分享目的仅供大家学习与参考,不代表本站立场。